
 The Hacking Way
 Part 1
 First Steps
 by Roman 'Kas1e' Karginby Roman 'Kas1e' Kargin

 proofread and grammar corrections by Trixie proofread and grammar corrections by Trixie
 2012.03.21 2012.03.21

Table of ContentsTable of Contents

 1. Introduction..31. Introduction..3
 2 2. . The Basics...3The Basics...3
 2.1 The C standard library (LibC)...3 2.1 The C standard library (LibC)...3

2.2 Myth #1: AmigaOS4 behaves like UNIX...42.2 Myth #1: AmigaOS4 behaves like UNIX...4
2.3 Myth #2: AmigaOS4 binaries are fat...42.3 Myth #2: AmigaOS4 binaries are fat...4
2.4 Genuine ELF executables..52.4 Genuine ELF executables..5

 3. PowerPC Assembly...7 3. PowerPC Assembly...7
 3.1 Registers...7 3.1 Registers...7

3.1.1 General-purpose registers..73.1.1 General-purpose registers..7
3.1.2 Some special registers...83.1.2 Some special registers...8

 3.2 Instructions..8 3.2 Instructions..8
 3.3 Function Prologue and Epilogue...9 3.3 Function Prologue and Epilogue...9
 4. Writing programs in assembler..10 4. Writing programs in assembler..10
 4.1 Assembler programming using LibC...10 4.1 Assembler programming using LibC...10

4.2 Assembler programming without LibC..154.2 Assembler programming without LibC..15
 5. Hacking it for real..17 5. Hacking it for real..17

5.1 Linker scripts (ldscripts)..175.1 Linker scripts (ldscripts)..17
5.2 Getting rid of relocation...185.2 Getting rid of relocation...18
5.3 The ELF Loader..215.3 The ELF Loader..21
5.4 What else can we do ?...255.4 What else can we do ?...25

 6. Final Words..26 6. Final Words..26
 7. Links...27 7. Links...27

1.Introduction1.Introduction
Back in the past, I wanted to make the smallest possible executables on UNIX-ish operating systems (likeBack in the past, I wanted to make the smallest possible executables on UNIX-ish operating systems (like
SunOS, Tru64, OS9, OpenVMS and others). As a result of my research I wrote a couple of small tutorials forSunOS, Tru64, OS9, OpenVMS and others). As a result of my research I wrote a couple of small tutorials for
various hacking-related magazines (like Phrack and x25zine). Doing the same on AmigaOS naturallyvarious hacking-related magazines (like Phrack and x25zine). Doing the same on AmigaOS naturally
became a topic of interest for me - even more so when I started seeing, in Amiga forums, questions likebecame a topic of interest for me - even more so when I started seeing, in Amiga forums, questions like
"Why are AmigaOS4 binaries bigger than they should be?" Therefore I believe that producing small OS4"Why are AmigaOS4 binaries bigger than they should be?" Therefore I believe that producing small OS4
executables could make an interesting topic for an article. Further in the text I'll explain how ldscripts canexecutables could make an interesting topic for an article. Further in the text I'll explain how ldscripts can
help the linker make non-aligned binaries, and cover various other aspects associated with the topic. I hopehelp the linker make non-aligned binaries, and cover various other aspects associated with the topic. I hope
that at least for programmers the article will be an interesting and thought-provoking read.that at least for programmers the article will be an interesting and thought-provoking read.

Before you go on, please note that it is assumed here that you have basic programming skills andBefore you go on, please note that it is assumed here that you have basic programming skills and
understanding of C and assembler, that you are familiar with BSD syntax, know how UNIX and AmigaOS3/4understanding of C and assembler, that you are familiar with BSD syntax, know how UNIX and AmigaOS3/4
work, and that you have the PPC V.4-ABI and ELF specification at hand. But if you don't, there's no need towork, and that you have the PPC V.4-ABI and ELF specification at hand. But if you don't, there's no need to
stop reading as i'll try to cover the basics where necessary.stop reading as i'll try to cover the basics where necessary.

2. The Basics2. The Basics
To begin withTo begin with, let's present and discuss some basic terms and concepts. We'll also dispel some popular, let's present and discuss some basic terms and concepts. We'll also dispel some popular
myths.myths.

2.1.The C standard library (LibC)2.1.The C standard library (LibC)

Thirty years ago, when the C language developed so much that its different implementations started to poseThirty years ago, when the C language developed so much that its different implementations started to pose
a practical problem, the American National Institute of Standards (ANSI) formed a committee for thea practical problem, the American National Institute of Standards (ANSI) formed a committee for the
standardization of the language. The standard, generally referred to as ANSI C, was finally adopted in 1989standardization of the language. The standard, generally referred to as ANSI C, was finally adopted in 1989
(this is why it is sometimes called C89). Part of this standard was a library including common functions,(this is why it is sometimes called C89). Part of this standard was a library including common functions,
called the "C standard library", or "C library", or "libc". The library has been an inherent part of allcalled the "C standard library", or "C library", or "libc". The library has been an inherent part of all
subsequently adopted C standards.subsequently adopted C standards.

 clib2: clib2:

This is an Amiga-specific implementation originally written from scratch by Olaf Barthel, with some This is an Amiga-specific implementation originally written from scratch by Olaf Barthel, with some
ideas borrowed from the BSD libc implementation, libnix, etc. Under AmigaOS4, clib2 is becoming ideas borrowed from the BSD libc implementation, libnix, etc. Under AmigaOS4, clib2 is becoming
phased out. The GCC compiler distributed as part of the OS4 SDK uses Newlib by default (as if you phased out. The GCC compiler distributed as part of the OS4 SDK uses Newlib by default (as if you
used the -mcrt=newlib switch). An important note: clib2 is only available for static linking, while used the -mcrt=newlib switch). An important note: clib2 is only available for static linking, while
Newlib is opened at runtime (thus making your executables smaller). Clib2 is open source, the latest Newlib is opened at runtime (thus making your executables smaller). Clib2 is open source, the latest
version can be found here:version can be found here:http://sourceforge.net/projects/clib2/http://sourceforge.net/projects/clib2/

 newlib: newlib:

A better and more modern libc implementation. While the AmigaOS4 version is closed source (all A better and more modern libc implementation. While the AmigaOS4 version is closed source (all
adaptations and additional work is done by the OS development team), it's based on the open source adaptations and additional work is done by the OS development team), it's based on the open source
version of Newlib. The original version is maintained by RedHat developer Jeff Johnston, and is used inversion of Newlib. The original version is maintained by RedHat developer Jeff Johnston, and is used in
most commercial and non-commercical GCC ports for non-Linux embedded systems: most commercial and non-commercical GCC ports for non-Linux embedded systems:
http://www.sourceware.org/newlib/http://www.sourceware.org/newlib/

Newlib does not cover the ANSI C99 standard only: it's an expanded library that also includes Newlib does not cover the ANSI C99 standard only: it's an expanded library that also includes
common POSIX functions (clib2 implements them as well). But certain POSIX functions - such as common POSIX functions (clib2 implements them as well). But certain POSIX functions - such as
glob(), globfree(), or fork() - are missing; and while some of them are easy to implement, others are glob(), globfree(), or fork() - are missing; and while some of them are easy to implement, others are
not - fork() being an example of the latter. not - fork() being an example of the latter. To add, Newlib is also available as a shared object.To add, Newlib is also available as a shared object.

 vclib: vclib:

This library was made for the vbcc compiler. Like clib2 it is linked statically, but only provides ANSI This library was made for the vbcc compiler. Like clib2 it is linked statically, but only provides ANSI
C/C99 functions (i.e. no POSIX).C/C99 functions (i.e. no POSIX).

http://sourceforge.net/projects/clib2/
http://www.sourceware.org/newlib/

2.2. Myth#1: AmigaOS4 behaves like UNIX. 2.2. Myth#1: AmigaOS4 behaves like UNIX.

From time to time you can hear voices saying that AmigaOS4 is becoming UNIX. This popular myth stems fromFrom time to time you can hear voices saying that AmigaOS4 is becoming UNIX. This popular myth stems from
three main sources. First, many games, utilities and libraries are ported over from the UNIX world. Second,three main sources. First, many games, utilities and libraries are ported over from the UNIX world. Second,
AmigaOS4 uses genuine ELF, the standard binary file format used in UNIX and UNIX-like systems. Third, theAmigaOS4 uses genuine ELF, the standard binary file format used in UNIX and UNIX-like systems. Third, the
OS supports, as of version 4.1, shared objects. All of this enables AmigaOS4 to provide more stuff for bothOS supports, as of version 4.1, shared objects. All of this enables AmigaOS4 to provide more stuff for both
programmers and users, and to complement native applications made for OS4. Today, it is quite normal that anprogrammers and users, and to complement native applications made for OS4. Today, it is quite normal that an
operating system provides all the popular third-party libraries like SDL, OpenGL, Cairo, Boost, OpenAL,operating system provides all the popular third-party libraries like SDL, OpenGL, Cairo, Boost, OpenAL,
FreeType etc. Not only they make software development faster but they also allow platform-independentFreeType etc. Not only they make software development faster but they also allow platform-independent
programming.programming.

Yet getting close to UNIX or Linux in terms of software or programming tools does not mean that AmigaOS4Yet getting close to UNIX or Linux in terms of software or programming tools does not mean that AmigaOS4
behaves in the same way as regards, for example, library initialization, passing arguments or system calls. Onbehaves in the same way as regards, for example, library initialization, passing arguments or system calls. On
AmigaOS4 there are no "system calls" as they are on UNIXes, where you can simply pass arguments toAmigaOS4 there are no "system calls" as they are on UNIXes, where you can simply pass arguments to
registers and then use an instruction (like "int 0x80h" on x86 Linux, "trap 0" on M68 Linux, or "sc" on someregisters and then use an instruction (like "int 0x80h" on x86 Linux, "trap 0" on M68 Linux, or "sc" on some
PPC/POWER CPU based OSes), which will cause a software interrupt and enter the kernel in supervisor mode.PPC/POWER CPU based OSes), which will cause a software interrupt and enter the kernel in supervisor mode.
The concept of AmigaOS is completely different. There is no kernel as such (the kernel.kmod module located inThe concept of AmigaOS is completely different. There is no kernel as such (the kernel.kmod module located in
SYS:Kickstart is just a new incarnation of the old exec.library); instead, the “Amiga kernel” is a collection ofSYS:Kickstart is just a new incarnation of the old exec.library); instead, the “Amiga kernel” is a collection of
libraries. Also, an AmigaOS program, when calling a library function, won’t enter supervisor mode but ratherlibraries. Also, an AmigaOS program, when calling a library function, won’t enter supervisor mode but rather
stays in user mode when the function is executed.stays in user mode when the function is executed.

Since the very first version of the OS that came with the Amigas in 1985, you must open a library and use itsSince the very first version of the OS that came with the Amigas in 1985, you must open a library and use its
vector table to execute a library function, so there’s no "system call" involved. The pointer to the first libraryvector table to execute a library function, so there’s no "system call" involved. The pointer to the first library
(exec.library) is always at address 4 and that hasn’t changed in AmigaOS4. By the way, the Quark kernel on(exec.library) is always at address 4 and that hasn’t changed in AmigaOS4. By the way, the Quark kernel on
MorphOS uses the "sc" instruction for system calls (so it does support them) but the programmers will neverMorphOS uses the "sc" instruction for system calls (so it does support them) but the programmers will never
use them because they work with the libraries (just like you do on AmigaOS4).use them because they work with the libraries (just like you do on AmigaOS4).

When you program in assembler under AmigaOS4, you cannot do much until you initialize and open all theWhen you program in assembler under AmigaOS4, you cannot do much until you initialize and open all the
needed libraries (unlike, for example, on UNIX where the kernel does all the necessary initialisation for you).needed libraries (unlike, for example, on UNIX where the kernel does all the necessary initialisation for you).

2.3. Myth#2: AmigaOS4 binaries are fat.2.3. Myth#2: AmigaOS4 binaries are fat.

This misunderstanding stems from the fact that the latest AmigaOS4 SDK uses a newer version of binutils,This misunderstanding stems from the fact that the latest AmigaOS4 SDK uses a newer version of binutils,
which now aligns ELF segments to 64K so that they can be easily loaded with mmap(). Binutils are, naturally,which now aligns ELF segments to 64K so that they can be easily loaded with mmap(). Binutils are, naturally,
developed with regard to UNIX-like OSes where the mmap() function actually exists so the modifications makedeveloped with regard to UNIX-like OSes where the mmap() function actually exists so the modifications make
sense - but since mmap() isn’t a genuine AmigaOS function (it’s just a wrapper using AllocVec() etc.), this kindsense - but since mmap() isn’t a genuine AmigaOS function (it’s just a wrapper using AllocVec() etc.), this kind
of alignment is not needed for AmigaOS.of alignment is not needed for AmigaOS.

Luckily, the size difference is only noticeable in small programs, like Hello World, where the resulting executableLuckily, the size difference is only noticeable in small programs, like Hello World, where the resulting executable
grows to 65KB. Which of course is unbelievable and looks like something is wrong. But once you startgrows to 65KB. Which of course is unbelievable and looks like something is wrong. But once you start
programming for real and produce bigger programs, the code fills up the ELF segments as required, there’sprogramming for real and produce bigger programs, the code fills up the ELF segments as required, there’s
little need for padding, and so there’s little size difference in the end. The worst-case scenario is ~64KB of extralittle need for padding, and so there’s little size difference in the end. The worst-case scenario is ~64KB of extra
padding, which only happens (as we said) in very small programs, or when you’re out of luck and your codepadding, which only happens (as we said) in very small programs, or when you’re out of luck and your code
only just exceeds a boundary between two segments.only just exceeds a boundary between two segments.

It is likely that a newer SDK will adapt binutils for AmigaOS4 and the padding will no longer be needed.It is likely that a newer SDK will adapt binutils for AmigaOS4 and the padding will no longer be needed.
Currently, to avoid alignment you can use the "-N" switch, which tells the linker to use an ldscript that buildsCurrently, to avoid alignment you can use the "-N" switch, which tells the linker to use an ldscript that builds
non-aligned binaries. Check the SDK:gcc/ppc-AmigaOS/lib/ldscripts directory; all the files ending with an "n"non-aligned binaries. Check the SDK:gcc/ppc-AmigaOS/lib/ldscripts directory; all the files ending with an "n"
(like “AmigaOS.xn” or “ELF32ppc.xbn”) are linker scripts that ensure non-aligned builds. Such a script will be(like “AmigaOS.xn” or “ELF32ppc.xbn”) are linker scripts that ensure non-aligned builds. Such a script will be
used when the GCC compiler receives the “-N” switch. See the following: used when the GCC compiler receives the “-N” switch. See the following:

 6/1.Work:>type hello.c6/1.Work:>type hello.c
 #include <stdio.h> #include <stdio.h>
 main() main()
 { {
 printf("aaaa");printf("aaaa");
 } }
 6/1.Work:> gcc hello.c -o hello 6/1.Work:> gcc hello.c -o hello
 6/1.Work:> strip hello 6/1.Work:> strip hello
 6/1.Work:> filesize format=%s hello 6/1.Work:> filesize format=%s hello
 65k 65k
 6/1.Work:> hello 6/1.Work:> hello
 aaaa aaaa

 6/1.Work:> gcc -N hello.c -o hello 6/1.Work:> gcc -N hello.c -o hello
 6/1.Work:> strip hello 6/1.Work:> strip hello
 6/1.Work:> filesize format=%s hello 6/1.Work:> filesize format=%s hello
 5480 5480
 6/1.work:> hello 6/1.work:> hello
 aaaa aaaa

2.4. Genuine ELF executables.2.4. Genuine ELF executables.

Just like libc, the Executable and Linkable Format (ELF) is a common standard. It is a file format used forJust like libc, the Executable and Linkable Format (ELF) is a common standard. It is a file format used for
executables, objects and shared libraries. It gets the most attention in connection with UNIX but it is reallyexecutables, objects and shared libraries. It gets the most attention in connection with UNIX but it is really
used on numerous other operating systems: all UNIX derivatives (Solaris, Irix, Linux, BSD, etc.), OpenVMS,used on numerous other operating systems: all UNIX derivatives (Solaris, Irix, Linux, BSD, etc.), OpenVMS,
several OSes used in mobile phones/devices, game consoles such as the PlayStation, the Wii and others.several OSes used in mobile phones/devices, game consoles such as the PlayStation, the Wii and others.
PowerUP, the PPC Amiga kernel made by Phase5 back in the 1990s used the ELF format as well. PowerUP, the PPC Amiga kernel made by Phase5 back in the 1990s used the ELF format as well.

A more detailed description of the ELF internals will be given later; all you need to know for now is that theA more detailed description of the ELF internals will be given later; all you need to know for now is that the
executable ELF file contains headers (the main header, and headers for the various sections) andexecutable ELF file contains headers (the main header, and headers for the various sections) and
sections/segments. The ELF file layout looks like this:sections/segments. The ELF file layout looks like this:

Compared to other Amiga and Amiga-like operating systems, AmigaOS4 uses genuine ELF executables,Compared to other Amiga and Amiga-like operating systems, AmigaOS4 uses genuine ELF executables,
while for example MorphOS uses relocatable objects (their own BFD backend), which contain the __abox__while for example MorphOS uses relocatable objects (their own BFD backend), which contain the __abox__
symbol. The advantage of objects is that they are smaller and that relocations are always included. But theresymbol. The advantage of objects is that they are smaller and that relocations are always included. But there
is a drawback as well: the linker will not tell you automatically whether all symbols have been resolvedis a drawback as well: the linker will not tell you automatically whether all symbols have been resolved
because an object is allowed to have unresolved references. (On the other hand, vlink could always detectbecause an object is allowed to have unresolved references. (On the other hand, vlink could always detect
unresolved references when linking PowerUP and MorphOS objects because it sees them as a new format.)unresolved references when linking PowerUP and MorphOS objects because it sees them as a new format.)
This is why ELF shared objects cannot be used easily (though it’s still kind of possible using some hacks),This is why ELF shared objects cannot be used easily (though it’s still kind of possible using some hacks),
and it explains why the OS4 team decided to go for real executables.and it explains why the OS4 team decided to go for real executables.

By specification, ELF files are meant to be executed from a fixed absolute address, and so AmigaOS4By specification, ELF files are meant to be executed from a fixed absolute address, and so AmigaOS4
programs need to be relocated (because all processes share the same address space). To do that, theprograms need to be relocated (because all processes share the same address space). To do that, the
compiler is passed the -q switch ("keep relocations") (Handling of relocations done by the MMU, which willcompiler is passed the -q switch ("keep relocations") (Handling of relocations done by the MMU, which will
create a new virtual address space for each new process). create a new virtual address space for each new process).

If you look at the linker scripts provided to build OS4 executables (in the SDK:gcc/ppc-amigaos/lib/ldscriptsIf you look at the linker scripts provided to build OS4 executables (in the SDK:gcc/ppc-amigaos/lib/ldscripts
directory), you'll find the following piece of code:directory), you'll find the following piece of code:

 ENTRY(_start)ENTRY(_start)

 SECTIONS SECTIONS
 { {
 PROVIDE (__executable_start = 0x01000000); . = 0x01000000 + SIZEOF_HEADERS;PROVIDE (__executable_start = 0x01000000); . = 0x01000000 + SIZEOF_HEADERS;
 [...] [...]

As you can see, AmigaOS4 executables look like they are linked to be executed at an absolute address ofAs you can see, AmigaOS4 executables look like they are linked to be executed at an absolute address of
0x01000000. But this is only faked; the ELF loader and relocations will recalculate all absolute addresses in0x01000000. But this is only faked; the ELF loader and relocations will recalculate all absolute addresses in
the program before it executes. Without relocations, each new process would be loaded at 0x01000000,the program before it executes. Without relocations, each new process would be loaded at 0x01000000,
where it would crash happily due to overwriting certain important areas, and because of other reasons. Youwhere it would crash happily due to overwriting certain important areas, and because of other reasons. You
may ask why 0x01000000 is used at all, considering that it’s just a placeholder and any number (be itmay ask why 0x01000000 is used at all, considering that it’s just a placeholder and any number (be it
0x00000000, 0x99999999, 0xDEADBEEF or 0xFEEDFACE) can be used instead. We can speculate and0x00000000, 0x99999999, 0xDEADBEEF or 0xFEEDFACE) can be used instead. We can speculate and
assume that 0x01000000 was chosen because it is the beginning of the memory map accessible forassume that 0x01000000 was chosen because it is the beginning of the memory map accessible for
instruction execution. But anyway, the value is currently not important. instruction execution. But anyway, the value is currently not important.

To perform a test, let’s see what happens if we build our binary without the "-q" switch (that is, withoutTo perform a test, let’s see what happens if we build our binary without the "-q" switch (that is, without
making the binary relocatable):making the binary relocatable):

shell:> cat test.c
#include <stdio.h>
main()
{
 printf("aaaa");
}
shell:>gcc test.c -S -o test.s
shell:>as test.s -o test
shell:>ld test.o -o test /SDK/newlib/lib/crtbegin.o /SDK/newlib/lib/LibC.a /SDK/newlib/lib/crtend.o

When you run the executable, you get a DSI with the 80000003 error, on the 0x1c offset in _start (i.e. theWhen you run the executable, you get a DSI with the 80000003 error, on the 0x1c offset in _start (i.e. the
code from the crtbegin.o). Ignoring the error will produce a yellow recoverable alert. The crash occurscode from the crtbegin.o). Ignoring the error will produce a yellow recoverable alert. The crash occurs
because we have compiled an ELF file to be executed at the 0x01000000 address, and as no "-q" switchbecause we have compiled an ELF file to be executed at the 0x01000000 address, and as no "-q" switch
was used, the remapping did not take place. To better understand why it happens you can check thewas used, the remapping did not take place. To better understand why it happens you can check the
crtbegin.o code, i.e. the code added to the binary at linking stage, which contains all the OS-dependentcrtbegin.o code, i.e. the code added to the binary at linking stage, which contains all the OS-dependent
initializations. If you know nothing about PPC assembler you can skip the following part for now and returninitializations. If you know nothing about PPC assembler you can skip the following part for now and return
when you’ve read the entire article:when you’ve read the entire article:

 6/0.RAM Disk:> objdump -D --no-show-raw-insn --stop-address=0x10000d0 test | grep -A8 "_start" 6/0.RAM Disk:> objdump -D --no-show-raw-insn --stop-address=0x10000d0 test | grep -A8 "_start"

010000b0 <_start>:010000b0 <_start>:

10000b0: stwu r1,-64(r1) #10000b0: stwu r1,-64(r1) #
10000b4: mflr r0 # prologue (reserve 64 byte stack frame)10000b4: mflr r0 # prologue (reserve 64 byte stack frame)
10000b8: stw r0,68(r1) #10000b8: stw r0,68(r1) #

10000bc: lis r9,25710000bc: lis r9,257 # 257 is loaded into the higher half-word # 257 is loaded into the higher half-word
 # # (msw) of r9 (257 << 16)(msw) of r9 (257 << 16)

10000c0: stmw r25,36(r1)10000c0: stmw r25,36(r1) # offset into the stack frame # offset into the stack frame
10000c4: mr r25,r310000c4: mr r25,r3 # save command line stack pointer # save command line stack pointer
10000c8: mr r27,r1310000c8: mr r27,r13 # r13 can be used as small data pointer # r13 can be used as small data pointer byby

 # # the V.4-ABI, and it also saved herethe V.4-ABI, and it also saved here
10000cc: stw 10000cc: stw r5,20(r9)r5,20(r9) # # Write value (257 << 16) + 20 = 0x01010014 Write value (257 << 16) + 20 = 0x01010014

 # # to the r5 (DOSBase pointer)to the r5 (DOSBase pointer)

The address in the last instruction points to a data segment starting at 0x010100000. But the address isThe address in the last instruction points to a data segment starting at 0x010100000. But the address is
invalid because, without any relocation, there is no data there and the MMU produces a data storageinvalid because, without any relocation, there is no data there and the MMU produces a data storage
interrupt (DSI) error. interrupt (DSI) error.

Of course it is possible to make a working binary without relocation, if the program doesn’t need to relocateOf course it is possible to make a working binary without relocation, if the program doesn’t need to relocate
and you are lucky enough to have the 0x1000000 address free of important contents. And of course you canand you are lucky enough to have the 0x1000000 address free of important contents. And of course you can
use a different address for the entry point, by hex-editing the binary or at build-time using self-made ldscripts.use a different address for the entry point, by hex-editing the binary or at build-time using self-made ldscripts.
Making a non-relocatable binary will be discussed further in the text. Making a non-relocatable binary will be discussed further in the text.

3. PowerPC Assembly.3. PowerPC Assembly.
In case you are not familiar and have no experience with PowerPC assembly, the following section willIn case you are not familiar and have no experience with PowerPC assembly, the following section will
explain some basic terms and concepts.explain some basic terms and concepts.

3.1 Registers.3.1 Registers.

The PowerPC processor architecture provides 32 general-purpose registers and 32 floating-point registers.The PowerPC processor architecture provides 32 general-purpose registers and 32 floating-point registers.
We’ll only be interested in certain general-purpose registers and a couple of special ones. The followingWe’ll only be interested in certain general-purpose registers and a couple of special ones. The following
overview describes the registers as they are used under AmigaOS4 (not UNIX):overview describes the registers as they are used under AmigaOS4 (not UNIX):

3.1.1 General-purpose registers.3.1.1 General-purpose registers.

r0r0
volatile register that may be modified during function linkagevolatile register that may be modified during function linkage

r1
stack-frame pointer, always validstack-frame pointer, always valid

r2
system reserved registersystem reserved register

r3
command-line pointercommand-line pointer

r4
command-line lengthcommand-line length

r5
DOSBase pointerDOSBase pointer

(the contents of registers r3-r5 is only valid when the program starts)(the contents of registers r3-r5 is only valid when the program starts)

r6 - r10
volatile registers used for parameter passingvolatile registers used for parameter passing

r11 - r12
volatile registers that may be modified during function linkagevolatile registers that may be modified during function linkage

r13
small data area pointer registersmall data area pointer register

r14 - r30
registers used for local variables; they are non-volatile; functions have to save and restore themregisters used for local variables; they are non-volatile; functions have to save and restore them

r31
preferred by GCC in position-independent code (e.g. in shared objects) as a base pointer into the GOTpreferred by GCC in position-independent code (e.g. in shared objects) as a base pointer into the GOT
section; however, the pointer can also be stored in another registersection; however, the pointer can also be stored in another register

Important note: This general-purpose register description shows that arguments can only be passed inImportant note: This general-purpose register description shows that arguments can only be passed in
registers r3 and above (that is, not in r0, r1 or r2). You need to keep that in mind whenregisters r3 and above (that is, not in r0, r1 or r2). You need to keep that in mind when
assembling/disassembling under AmigaOS4.assembling/disassembling under AmigaOS4.

3.1.2 Some special registers.3.1.2 Some special registers.

lrlr
link register; stores the "ret address" (i.e. the address to which a called function normally returns)link register; stores the "ret address" (i.e. the address to which a called function normally returns)

cr
condition register.condition register.

3.2 Instructions.3.2 Instructions.

There are many different PowerPC instructions that serve many different purposes: there are branchThere are many different PowerPC instructions that serve many different purposes: there are branch
instructions, condition register instructions, instructions for storage access, integer arithmetic, comparison,instructions, condition register instructions, instructions for storage access, integer arithmetic, comparison,
logic, rotation, cache control, processor management, and so on. In fact there are so many instructions that itlogic, rotation, cache control, processor management, and so on. In fact there are so many instructions that it
would make no sense to cover them all here. You can download Freescale’s Green Book (see the Linkswould make no sense to cover them all here. You can download Freescale’s Green Book (see the Links
section at the end of the article) if you are interested in a more detailed description but we’ll just stick to asection at the end of the article) if you are interested in a more detailed description but we’ll just stick to a
number of instructions that are interesting and useful for our purposes.number of instructions that are interesting and useful for our purposes.

bb
Relative branch on address (example: "b 0x7fcc7244"). Note that there are both relative and Relative branch on address (example: "b 0x7fcc7244"). Note that there are both relative and
absolute branches (ba). Relative branches can branch to a distance of -32 to +32MB. Absolute absolute branches (ba). Relative branches can branch to a distance of -32 to +32MB. Absolute
branches can jump to 0x00000000 - 0x01fffffc and 0xfe000000 - 0xfffffffc. However, absolute branches can jump to 0x00000000 - 0x01fffffc and 0xfe000000 - 0xfffffffc. However, absolute
branches will not be used in AmigaOS programs.branches will not be used in AmigaOS programs.

bctr

Branch with count register. It uses the count register as a target address, so that the link register Branch with count register. It uses the count register as a target address, so that the link register
with, say, our return address remains unmodified.with, say, our return address remains unmodified.

lis

Stands for "load immediate shifted". The PowerPC instruction set doesn’t allow loading a 32-bit Stands for "load immediate shifted". The PowerPC instruction set doesn’t allow loading a 32-bit
constant with a single instruction. You will always need two instructions that load the upper and the constant with a single instruction. You will always need two instructions that load the upper and the
lower 16-bit half, respectively. For example, if you want to load 0x12345678 into register r3, you lower 16-bit half, respectively. For example, if you want to load 0x12345678 into register r3, you
need to do the following:need to do the following:

lislis %r3, 0x1234%r3, 0x1234
oriori %r3, %r3, 0x5678%r3, %r3, 0x5678

Later in the article you’ll notice that this kind of construction is used all the time.Later in the article you’ll notice that this kind of construction is used all the time.

mtlr
"move to link register". In reality this is just a mnemonic for "mtspr 8,r". The instruction is typically "move to link register". In reality this is just a mnemonic for "mtspr 8,r". The instruction is typically
used for transferring an address from register r0 to the link register (lr), but you can of course move used for transferring an address from register r0 to the link register (lr), but you can of course move
contents to lr from other registers, not just r0.contents to lr from other registers, not just r0.

stwu

"store word and update" (all instructions starting with “st” are for storing). For example, stwu %r1, "store word and update" (all instructions starting with “st” are for storing). For example, stwu %r1,
-16(%r1) stores the contents of register r1 into a memory location whose effective address is -16(%r1) stores the contents of register r1 into a memory location whose effective address is
calculatedcalculated by taking the value of 16 from r1. At the same time, r1 is updated to contain the effective by taking the value of 16 from r1. At the same time, r1 is updated to contain the effective
address. As we already know, register r1 contains the stack-frame pointer so our instruction stores address. As we already know, register r1 contains the stack-frame pointer so our instruction stores
the contents of the register to a position at offset -16 from the current top of stack and then the contents of the register to a position at offset -16 from the current top of stack and then
decrements the stack pointer by 16.decrements the stack pointer by 16.

The PowerPC processor has many more instructions and various kinds of mnemonics, all of which are wellThe PowerPC processor has many more instructions and various kinds of mnemonics, all of which are well
covered in numerous PPC-related tutorials, so to avoid copying-and-pasting (and wasting space here) wecovered in numerous PPC-related tutorials, so to avoid copying-and-pasting (and wasting space here) we
have described a few that happen to be used very often. You’ll need to refer to the relevant documentation ifhave described a few that happen to be used very often. You’ll need to refer to the relevant documentation if
you want to read more about the PowerPC instruction set (see Links below).you want to read more about the PowerPC instruction set (see Links below).

3.3 Function Prologue and Epilogue.3.3 Function Prologue and Epilogue.

When a C function executes, its code – seen from the assembler perspective – will contain two parts calledWhen a C function executes, its code – seen from the assembler perspective – will contain two parts called
the prologue (at the beginning of the function) and the epilogue (at the end of the function). The purpose ofthe prologue (at the beginning of the function) and the epilogue (at the end of the function). The purpose of
these parts is to save the return address so that the function knows where to jump after the subroutine isthese parts is to save the return address so that the function knows where to jump after the subroutine is
finished.finished.

stwu %r1,-16(%r1) stwu %r1,-16(%r1)
mflr %r0 # prologue, reserve 16 byte stack frame
stw %r0,20(%r1)

...

lwz %r0,20(%r1)
addi %r1,%r1,16 # epilogue, restore back
mtlr %r0
blr

The prologue code generally opens a stack frame with a stwu instruction that increments register r1 andThe prologue code generally opens a stack frame with a stwu instruction that increments register r1 and
stores the old value at the first address of the new frame. The epilogue code just loads r1 with the old stackstores the old value at the first address of the new frame. The epilogue code just loads r1 with the old stack
value.value.

C programmers needn’t worry at all about the prologue and epilogue because the compiler will add them toC programmers needn’t worry at all about the prologue and epilogue because the compiler will add them to
their functions automatically. When you write your programs in pure assembler you can skip the prologuetheir functions automatically. When you write your programs in pure assembler you can skip the prologue
and the epilogue if you don’t need to keep the return address.and the epilogue if you don’t need to keep the return address.

Plus, a new stack frame doesn’t need to be allocated for functions that do not call any subroutine. By thePlus, a new stack frame doesn’t need to be allocated for functions that do not call any subroutine. By the
way, the V.4-ABI (application binary interface) defines a specific layout of the stack frame and stipulates thatway, the V.4-ABI (application binary interface) defines a specific layout of the stack frame and stipulates that
it should be aligned to 16 bytes.it should be aligned to 16 bytes.

4. Writing programs in assembler.4. Writing programs in assembler.

There are two ways to write assembler programs under AmigaOS4:There are two ways to write assembler programs under AmigaOS4:

●● using libc (all initializations are done by crtbegin.o/crtend.o and libc is attached to the binary) using libc (all initializations are done by crtbegin.o/crtend.o and libc is attached to the binary)
●● "the old way" (all initializations - opening libraries, interfaces etc. - have to be done manually in "the old way" (all initializations - opening libraries, interfaces etc. - have to be done manually in
 the codethe code))

The advantage of using libc is that you can run your code "out of the box" and that all you need to know isThe advantage of using libc is that you can run your code "out of the box" and that all you need to know is
the correct offsets to the function pointers. On the minus side, the full library is attached to the binary, makingthe correct offsets to the function pointers. On the minus side, the full library is attached to the binary, making
it bigger. Sure, a size difference of ten or even a hundred kilobytes doesn’t play a big role these days – butit bigger. Sure, a size difference of ten or even a hundred kilobytes doesn’t play a big role these days – but
here in this article we’re going down the old hacking way (that’s why we’re fiddling with assembler at all) sohere in this article we’re going down the old hacking way (that’s why we’re fiddling with assembler at all) so
let’s call it a drawback.let’s call it a drawback.

The advantage of The advantage of not not using libc is that you gain full control of your program, you can only use the functionsusing libc is that you gain full control of your program, you can only use the functions
you need, and the resulting binary will be as small as possible (a fully working binary can have as little asyou need, and the resulting binary will be as small as possible (a fully working binary can have as little as
100 bytes in size). The drawback is that you have to initialize everything manually.100 bytes in size). The drawback is that you have to initialize everything manually.

We’ll first discuss assembler programming with the use of libc.We’ll first discuss assembler programming with the use of libc.

4.1 Assembler programming with LibC.4.1 Assembler programming with LibC.

To illustrate how this works we’ll compile a Newlib-based binary (the default GCC setting) using the –g switchTo illustrate how this works we’ll compile a Newlib-based binary (the default GCC setting) using the –g switch
(“include debugging information”) and then put the GDB debugger on the job:(“include debugging information”) and then put the GDB debugger on the job:

#include <stdio.h>#include <stdio.h>
main()
{
 printf("aaaa");
 exit(0);
}

6/0.RAM Disk:> gcc -gstabs -O2 2.c -o 2

6/0.RAM Disk:> GDB -q 2
(GDB) break main
Breakpoint 1 at 0x7fcc7208: file 2.c, line 4.
(GDB) r
Starting program: /RAM Disk/2
BS 656d6ed8
Current action: 2

Breakpoint 1, main () at 2.c:4
4 {
(GDB) disas
Dump of assembler code for function main:
0x7fcc7208 <main+0>: stwu r1,-16(r1)
0x7fcc720c <main+4>: mflr r0
0x7fcc7210 <main+8>: lis r3,25875 ; that addr
0x7fcc7214 <main+12>: addi r3,r3,-16328 ; on our string
0x7fcc7218 <main+16>: stw r0,20(r1)
0x7fcc721c <main+20>: crclr 4*cr1+eq
0x7fcc7220 <main+24>: bl 0x7fcc7234 <printf>
0x7fcc7224 <main+28>: li r3,0
0x7fcc7228 <main+32>: bl 0x7fcc722c <exit>
End of assembler dump.
(GDB)

Now we’ll use GDB to disassemble the printf() and exit() functions from Newlib’s LibC.a. As mentionedNow we’ll use GDB to disassemble the printf() and exit() functions from Newlib’s LibC.a. As mentioned
above, Newlib is used by default, there’s no need to use the –mcrt switch unless we want clib2 instead (inabove, Newlib is used by default, there’s no need to use the –mcrt switch unless we want clib2 instead (in
which case we’d compile the source with “-mcrt=clib2”). which case we’d compile the source with “-mcrt=clib2”).

(GDB) disas printf
Dump of assembler code for function printf:
0x7fcc723c <printf+0>: li r12,1200
0x7fcc7240 <printf+4>: b 0x7fcc7244 <__NewLibCall>
End of assembler dump.
(GDB)

(GDB) disas exit
Dump of assembler code for function exit:
0x7fcc7234 <exit+0>: li r12,1620
0x7fcc7238 <exit+4>: b 0x7fcc7244 <__NewLibCall>
End of assembler dump.
(GDB)

You can see that register r12 contains some values depending on the function - they are function pointerYou can see that register r12 contains some values depending on the function - they are function pointer
offsets in Newlib’s interface structure (INewLib). Then there’s the actual jump to __NewLibCall, so let’s haveoffsets in Newlib’s interface structure (INewLib). Then there’s the actual jump to __NewLibCall, so let’s have
a look at it:a look at it:

(GDB) disas __NewLibCall
Dump of assembler code for function __NewLibCall:
0x7fcc7244 <__NewLibCall+0>: lis r11,26006
0x7fcc7248 <__NewLibCall+4>: lwz r0,-25500(r11)
0x7fcc724c <__NewLibCall+8>: lwzx r11,r12,r0
0x7fcc7250 <__NewLibCall+12>: mtctr r11
0x7fcc7254 <__NewLibCall+16>: bctr
End of assembler dump.
(GDB)

Of course you can use "objdump" (like MorphOS developers do):Of course you can use "objdump" (like MorphOS developers do):

6/0.RAM Disk:> objdump -d 1 | grep -A5 "<__NewLibCall>:"
01000280 <__NewLibCall>:
1000280: 3d 60 01 01 lis r11,257
1000284: 80 0b 00 24 lwz r0,36(r11)
1000288: 7d 6c 00 2e lwzx r11,r12,r0
100028c: 7d 69 03 a6 mtctr r11
1000290: 4e 80 04 20 bctr

6/0.RAM Disk:>

But using GDB is more comfortable: you don’t need to scroll through the full objdump output, or search in itBut using GDB is more comfortable: you don’t need to scroll through the full objdump output, or search in it
with grep, etc. You can, too, obtain assembler output by compiling the source with the –S switch but GDBwith grep, etc. You can, too, obtain assembler output by compiling the source with the –S switch but GDB
makes it possible to get as deep into the code as you wish (in fact down to the kernel level).makes it possible to get as deep into the code as you wish (in fact down to the kernel level).

We will now We will now remove the prologue (because we don’t need it in this case) and reorganize the code a bit:remove the prologue (because we don’t need it in this case) and reorganize the code a bit:

 .globl main
main:
 lis %r3,.msg@ha #
 la %r3,.msg@l(%r3) # printf("aaaa");
 bl printf #

 li %r3,0 # exit(0);
 bl exit #

.msg:
 .string "aaaa"

6/0.RAM Disk:> as test.s -o test.o
6/0.RAM Disk:> ld -N -q test.o -o test /SDK/newlib/lib/crtbegin.o
/SDK/newlib/lib/LibC.a /SDK/newlib/lib/crtend.o
6/0.RAM Disk:> strip test
6/0.RAM Disk:> filesize format=%s test
5360
6/0.RAM Disk:> test
aaaa
6/0.RAM Disk:>

When we compile our Hello World program in C (with the -N switch and stripping, of course) it is 5504 bytesWhen we compile our Hello World program in C (with the -N switch and stripping, of course) it is 5504 bytes
in size; our assembler code gives 5360 bytes. Nice, but let’s try to reduce it some more (even if we’ll stillin size; our assembler code gives 5360 bytes. Nice, but let’s try to reduce it some more (even if we’ll still
keep libc attached). Instead of branching to the functions themselves (“blkeep libc attached). Instead of branching to the functions themselves (“bl functionfunction”) we’ll use function pointer”) we’ll use function pointer
offsets and branch to __NewLibCall: offsets and branch to __NewLibCall:

 .globl main
main:

 #printf("aaaa")

 lis %r3,.msg@ha # arg1 part1
 la %r3,.msg@l(%r3) # arg1 part2
 li %r12, 1200 # 1200 - pointer offset to function
 b __NewLibCall

 #exit(0)

 li %r3, 0 # arg1
 li %r12, 1620 # 1620 - pointer offset to function
 b __NewLibCall

.msg:
 .string "aaaa"

6/0.RAM Disk:> as test.s -o test.o
6/0.RAM Disk:> ld -N -q test.o -o test /SDK/newlib/lib/crtbegin.o
/SDK/newlib/lib/LibC.a /SDK/newlib/lib/crtend.o
6/0.RAM Disk:> strip test
6/0.RAM Disk:> filesize format=%s test
5336
6/0.RAM Disk:> test
aaaa
6/0.RAM Disk:>

The size is now 5336. We’ve saved 24 bytes, no big deal! Now let’s get real heavy and try to mimicThe size is now 5336. We’ve saved 24 bytes, no big deal! Now let’s get real heavy and try to mimic
__NewLibCall using our own code: __NewLibCall using our own code:

 .globl main.globl main
main:
 lis %r3,.msg@ha #
 la %r3,.msg@l(%r3) # printf("aaaa");
 li %r12, 1200

 lis %r11,26006
 lwz %r0,-25500(%r11)
 lwzx %r11,%r12,%r0 # __NewLibCall
 mtctr %r11
 bctr

 li %r3, 0
 li %r12, 1620 # exit

 lis %r11,26006
 lwz %r0,-25500(%r11)
 lwzx %r11,%r12,%r0 # __NewLibCall
 mtctr %r11
 bctr

.msg:
 .string "aaaa"

It crashes but why? Because lis %r11,26006 and lwz %r0,-25500(%r11) load a pointer from 0x010100024. InIt crashes but why? Because lis %r11,26006 and lwz %r0,-25500(%r11) load a pointer from 0x010100024. In
the original __NewLibCall code this is a read access to the NewLib interface pointer. But as we already know,the original __NewLibCall code this is a read access to the NewLib interface pointer. But as we already know,
we cannot read from the absolute address 0x01010024 because it’s illegal, and the ELF loader must relocatewe cannot read from the absolute address 0x01010024 because it’s illegal, and the ELF loader must relocate
this address to point to the real NewLib interface pointer (INewlib). We didn’t see that before because we usedthis address to point to the real NewLib interface pointer (INewlib). We didn’t see that before because we used
objdump without the "-r" switch (which shows relocations), so let’s use it now:objdump without the "-r" switch (which shows relocations), so let’s use it now:

7/0.RAM Disk:> objdump -dr 1 | grep -A7 "<__NewLibCall>:"
01000298 <__NewLibCall>:
 1000298: 3d 60 01 01 lis r11,257
 100029a: R_PPC_ADDR16_HA INewlib
 100029c: 80 0b 00 24 lwz r0,36(r11)
 100029e: R_PPC_ADDR16_LO INewlib
 10002a0: 7d 6c 00 2e lwzx r11,r12,r0
 10002a4: 7d 69 03 a6 mtctr r11
 10002a8: 4e 80 04 20 bctr

7/0.RAM Disk:>

So we’ll rewrite our code using the normal interface pointer, and turn the __NewLibCall code into a macro:So we’ll rewrite our code using the normal interface pointer, and turn the __NewLibCall code into a macro:

.macro OUR_NEWLibCALL
 lis %r11,INewlib@ha
 lwz %r0,INewlib@l(%r11)
 lwzx %r11,%r12,%r0
 mtctr %r11
 bctr
.endm

 .globl main
main:
 lis %r3,.msg@ha
 la %r3,.msg@l(%r3) # printf("aaaa");
 li %r12, 1200

 OUR_NEWLibCALL

 li %r3, 0
 li %r12, 1620 # exit(0);

 OUR_NEWLibCALL

.msg:
 .string "aaaa"

Works now! Still, after stripping, the size is 5336 bytes but at least the code is fully in our hands and we canWorks now! Still, after stripping, the size is 5336 bytes but at least the code is fully in our hands and we can
play with instructions. It’s time to read some good stuff like the Green Book (see Links below) if you want toplay with instructions. It’s time to read some good stuff like the Green Book (see Links below) if you want to
do real beefy hacking.do real beefy hacking.

By the way, when we debug our binary, you’ll notice that GCC has put a strangely-looking instruction rightBy the way, when we debug our binary, you’ll notice that GCC has put a strangely-looking instruction right
before the call to a libc function: crxor 6,6,6 (crclr 4*cr1+eq). This is done in compliance with the ABIbefore the call to a libc function: crxor 6,6,6 (crclr 4*cr1+eq). This is done in compliance with the ABI
specification, which says that before a variadic function is called, an extra instruction (crxor 6,6,6 or creqvspecification, which says that before a variadic function is called, an extra instruction (crxor 6,6,6 or creqv
6,6,6) must be executed that sets Condition Register 6 (CR6) to either 1 or 0. The value depends on whether6,6,6) must be executed that sets Condition Register 6 (CR6) to either 1 or 0. The value depends on whether
one or more arguments need to go to a floating-point register. If no arguments are being passed in floating-one or more arguments need to go to a floating-point register. If no arguments are being passed in floating-
point registers, crxor 6,6,6 is added in order to set the Condition Register to 0. If you call a variadic functionpoint registers, crxor 6,6,6 is added in order to set the Condition Register to 0. If you call a variadic function
with floating-point arguments, the call will be preceded by a creqv 6,6,6 that sets Condition Register 6 to thewith floating-point arguments, the call will be preceded by a creqv 6,6,6 that sets Condition Register 6 to the
value of 1.value of 1.

You may ask where on Earth we got the numerical values (offsets) for the libc functions, i.e. “1200”You may ask where on Earth we got the numerical values (offsets) for the libc functions, i.e. “1200”
representing printf() and “1620” representing exit(). For newlib.library, there is no documentation, header filesrepresenting printf() and “1620” representing exit(). For newlib.library, there is no documentation, header files
or an interface description in the official AmigaOS4 SDK so you have to find it all out yourself. There are aor an interface description in the official AmigaOS4 SDK so you have to find it all out yourself. There are a
couple of ways to do it: couple of ways to do it:

●● Write the program in C and obtain the numbers by disassembling the code (using GDB or objdump).Write the program in C and obtain the numbers by disassembling the code (using GDB or objdump).
 Not much fun but at least you can inspect what arguments are used and in which registers they are Not much fun but at least you can inspect what arguments are used and in which registers they are
 stored. stored.
●● "the old way" (all initializations - opening libraries, interfaces etc. - have to be done manually in "the old way" (all initializations - opening libraries, interfaces etc. - have to be done manually in
 the codethe code))

shell:> objdump -dr SDK:newlib/lib/LibC.a

The library only contains stub functions, and output will look like the following:The library only contains stub functions, and output will look like the following:

---- SNIP ----

Disassembly of section .text:

00000000 <realloc>:
 0: 39 80 01 64 li r12,356
 4: 48 00 00 00 b 4 <realloc+0x4>
 4: R_PPC_REL24 __NewLibCall

 stub_realpath.o: file format ELF32-AmigAOS

Disassembly of section .text:

00000000 <realpath>:
 0: 39 80 0c 00 li r12,3072
 4: 48 00 00 00 b 4 <realpath+0x4>
 4: R_PPC_REL24 __NewLibCall

stub_recv.o: file format ELF32-AmigaOS

---- SNIP ----

You can write a simple script that will parse the disassembly and give you the list in any form you wish.You can write a simple script that will parse the disassembly and give you the list in any form you wish.

4.2 Assembler programming without LibC.4.2 Assembler programming without LibC.

If you want to write programs without using the C standard library, your code should do what runtime objectsIf you want to write programs without using the C standard library, your code should do what runtime objects
would normally take care of: that is, initialize all the necessary system-related stuff. It is almost the same aswould normally take care of: that is, initialize all the necessary system-related stuff. It is almost the same as
on the old AmigaOS3.x, only with some OS4-specific parts. This is what you should do:on the old AmigaOS3.x, only with some OS4-specific parts. This is what you should do:

●● obtain SysBase (pointer to exec.library)
●● obtain the exec.library interface obtain the exec.library interface
●● IExec->Obtain() IExec->Obtain()
●● open dos.library and its interface (if you want to use dos.library functions) open dos.library and its interface (if you want to use dos.library functions)
●● Iexec->GetInterface()Iexec->GetInterface()

......your code...your code...

●● IExec->DropInterface()IExec->DropInterface()
●● IExec->CloseLibrary()IExec->CloseLibrary()
●● IExec->Release()IExec->Release()
●● exit(0)exit(0)

As of now, we can no longer use printf() because it’s a libc function - if we want to produce a really smallAs of now, we can no longer use printf() because it’s a libc function - if we want to produce a really small
binary, we cannot afford the luxury of attaching the entire libc to be able to use printf() only! Instead, we needbinary, we cannot afford the luxury of attaching the entire libc to be able to use printf() only! Instead, we need
to use the AmigaOS API: in this particular case, the Write() function from dos.library.to use the AmigaOS API: in this particular case, the Write() function from dos.library.

There is a Hello World example written by Frank Wille for his assembler 'vasm'; I’ll adapt it for the GNUThere is a Hello World example written by Frank Wille for his assembler 'vasm'; I’ll adapt it for the GNU
assembler ('as') in order to make the article related to one compiler. (Both the original and the adaptedassembler ('as') in order to make the article related to one compiler. (Both the original and the adapted
version can be found in the archive that comes with the article):version can be found in the archive that comes with the article):

Exec Base
.set ExecBase,4
.set MainInterface,632

Exec Interface
.set Obtain,60
.set Release,64
.set OpenLibrary,424
.set CloseLibrary,428
.set GetInterface,448
.set DropInterface,456

DOS Interface
.set Write,88
.set Output,96

.macro CALLOS reg,val # Interface register, function offset
 lwz %r0,\val(\reg)
 mr %r3,\reg
 mtctr %r0
 bctrl
.endm

 .text

 .global _start
_start:

 mflr %r0
 stwu %r1,-32(%r1)

 stmw %r28,8(%r1)
 mr %r31,%r0

 # get SysBase
 li %r11,ExecBase
 lwz %r3,0(%r11)

 # get Exec-Interface
 lwz %r30,MainInterface(%r3) # r30 IExec

 # IExec->Obtain()
 CALLOS %r30,Obtain

 # open dos.library and get DOS-Interface
 # IExec->OpenLibrary("dos.library",50)
 lis %r4,dos_name@ha
 addi %r4,%r4,dos_name@l
 li %r5,50
 CALLOS %r30,OpenLibrary
 mr. %r28,%r3 # r28 DOSBase
 beq release_exec

 # IExec->GetInterface(DOSBase,"main",1,0)
 mr %r4,%r28
 lis %r5,main_name@ha
 addi %r5,%r5,main_name@l
 li %r6,1
 li %r7,0
 CALLOS %r30,GetInterface
 mr. %r29,%r3 # r29 IDOS
 beq close_dos

 # IDOS->Output()
 CALLOS %r29,Output

 # IDOS->Write(stdout,"Hello World!\n",13)
 mr %r4,%r3
 lis %r5,hello_world@ha
 addi %r5,%r5,hello_world@l
 li %r6,hello_world_end-hello_world
 CALLOS %r29,Write

 # IExec->DropInterface(IDOS)
 mr %r4,%r29
 CALLOS %r30,DropInterface

close_dos:
 # IExec->CloseLibrary(DOSBase)
 mr %r4,%r28
 CALLOS %r30,CloseLibrary

release_exec:
 # IExec->Release()
 CALLOS %r30,Release

 # exit(0)
 li %r3,0
 mtlr %r31
 lmw %r28,8(%r1)
 addi %r1,%r1,32
 blr

 .rodata

dos_name:
 .string "dos.library"
main_name:
 .string "main"
hello_world:

 .string "Hello World!"
hello_world_end:

If you did assembler programming under AmigaOS 3.x, you can see that the logic is the same, just theIf you did assembler programming under AmigaOS 3.x, you can see that the logic is the same, just the
assembler is different and some OS4-specific bits and pieces (the interface-related stuff) have been added.assembler is different and some OS4-specific bits and pieces (the interface-related stuff) have been added.
Now let’s compile and link the source and then strip the binary to see how our “slimming diet” works:Now let’s compile and link the source and then strip the binary to see how our “slimming diet” works:

6/0.Work:> as hello.s -o hello.o
6/0.Work:> ld -q hello.o -o hello
6/0.Work:> strip hello
6/0.Work:> filesize format=%s hello
4624

Right, so we got down to 4624 bytes. A little better when compared with the libc version (which was 5336 inRight, so we got down to 4624 bytes. A little better when compared with the libc version (which was 5336 in
size), but still too much for a Hello World program.size), but still too much for a Hello World program.

To obtain the numerical values that identify system functions, you need to study the interface descriptionTo obtain the numerical values that identify system functions, you need to study the interface description
XML files that are provided in the AmigaOS4 SDK. For example, for exec.library functions you need to readXML files that are provided in the AmigaOS4 SDK. For example, for exec.library functions you need to read
the file “SDK:include/interfaces/exec.xml”. All interfaces contain a jump table. The offset for the first interfacethe file “SDK:include/interfaces/exec.xml”. All interfaces contain a jump table. The offset for the first interface
"method" is 60, the next one is 64 and so on. So you just open the appropriate interface description XML file,"method" is 60, the next one is 64 and so on. So you just open the appropriate interface description XML file,
start counting from 60, and add +4 for any method that follows.start counting from 60, and add +4 for any method that follows.

5. Hacking it for real.5. Hacking it for real.

5.1 Linker scripts (ldscripts).5.1 Linker scripts (ldscripts).

Every time you perform linking to produce an executable, the linker uses a special script called ldscript (passEvery time you perform linking to produce an executable, the linker uses a special script called ldscript (pass
the “-verbose” argument to see which one is used by default). The script is written in the linker’s commandthe “-verbose” argument to see which one is used by default). The script is written in the linker’s command
language. The main purpose of the linker script is to describe how the sections in the input file(s) should belanguage. The main purpose of the linker script is to describe how the sections in the input file(s) should be
mapped into the output file, and to control the memory layout of the output file. Most linker scripts do nothingmapped into the output file, and to control the memory layout of the output file. Most linker scripts do nothing
more that that, but – should you have the need – the script can also direct the linker to perform othermore that that, but – should you have the need – the script can also direct the linker to perform other
operations, using the available set of commands in the command language. To provide your own, customoperations, using the available set of commands in the command language. To provide your own, custom
script to the linker, the "-T" switch is used. (By the way, the "-N" switch, mentioned earlier and used to makescript to the linker, the "-T" switch is used. (By the way, the "-N" switch, mentioned earlier and used to make
non-aligned executables, also affects the choice of the default linker script.)non-aligned executables, also affects the choice of the default linker script.)

What does all of that mean for us and how is it related to this article? Well, when you read the ldscriptsWhat does all of that mean for us and how is it related to this article? Well, when you read the ldscripts
documentation (see Links below), you can build your own ldscript that will only create the necessary sections.documentation (see Links below), you can build your own ldscript that will only create the necessary sections.
That is: we can produce a minimum working executable and thus get rid of parts that even 'strip' wouldn’t beThat is: we can produce a minimum working executable and thus get rid of parts that even 'strip' wouldn’t be
able to remove.able to remove.

So following the first-test example from the ldscript documentation, we’ll write our own script now:So following the first-test example from the ldscript documentation, we’ll write our own script now:

 SECTIONS
 {
 . = 0x00000000;
 .text : { *(.text) }
 }

But why did we put 0x00000000 here as the entry point of the code? Well as we discussed earlier, theBut why did we put 0x00000000 here as the entry point of the code? Well as we discussed earlier, the
address is just a placeholder so it has no real meaning under AmigaOS4 (the ELF loader will performaddress is just a placeholder so it has no real meaning under AmigaOS4 (the ELF loader will perform
relocation and calculate the proper address). Nevertheless, the address value is used when the ELF binaryrelocation and calculate the proper address). Nevertheless, the address value is used when the ELF binary

is created, and it can make a difference as regards the executable size because of paging. So, let’s compileis created, and it can make a difference as regards the executable size because of paging. So, let’s compile
our non-libc assembler code and provide our custom linker script:our non-libc assembler code and provide our custom linker script:

 shell:> as hello.s -o hello.o
 shell:> ld -Tldscript -q -o hello hello.o
 shell:> stat -c=%s hello
 =66713

OMG! 66 kilobytes! But that was quite expected, considering the entry point address we have provided. YouOMG! 66 kilobytes! But that was quite expected, considering the entry point address we have provided. You
can now play with the address value to see what difference in the executable size it makes. For example, ifcan now play with the address value to see what difference in the executable size it makes. For example, if
you try 0x11111111, the size of the binary is 5120 bytes; 0xAAAAAAAA will result in 44440 bytes. Apparently,you try 0x11111111, the size of the binary is 5120 bytes; 0xAAAAAAAA will result in 44440 bytes. Apparently,
this generally meaningless address does make a difference because it affects paging. So all we need to dothis generally meaningless address does make a difference because it affects paging. So all we need to do
is choose a value that will, hopefully, avoid any kind of paging. We can consult the ldscripts manual againis choose a value that will, hopefully, avoid any kind of paging. We can consult the ldscripts manual again
and we’ll find this:and we’ll find this:

SIZEOF_HEADERS:SIZEOF_HEADERS:
Returns the size in bytes of the output file’s headers. You can use this number as the start address ofReturns the size in bytes of the output file’s headers. You can use this number as the start address of
the first section, to facilate paging.the first section, to facilate paging.

This looks like the thing we need, so:This looks like the thing we need, so:

 SECTIONSSECTIONS
 {
 . = SIZEOF_HEADERS;
 .text : { *(.text) }
 }

 shell:> as hello.s -o hello.o
 shell:> ld -Tldscript -q -o hello hello.o
 shell:> stat -c=%s hello
 =1261

 shell:> strip hello
 shell:> stat -c=%s hello
 =832

 shell:> hello
 Hello World!
 shell:>

832 bytes of size and works!832 bytes of size and works!

5.2 Getting rid of relocation.5.2 Getting rid of relocation.

Now, lets see what kind of sections our 832 bytes binary has:Now, lets see what kind of sections our 832 bytes binary has:

7/0.Work:> readelf -S hello
There are 7 section headers, starting at offset 0x198:

Section Headers:

 [Nr] Name Type Addr Off Size ES Flg Lk Inf Al
 [0] NULL 00000000 000000 000000 00 0 0 0
 [1] .text PROGBITS 00000054 000054 0000f8 00 AX 0 0 1
 [2] .rela.text RELA 00000000 0002f8 000048 0c 5 1 4
 [3] .rodata PROGBITS 0000014c 00014c 00001e 00 A 0 0 1
 [4] .shstrtab STRTAB 00000000 00016a 00002e 00 0 0 1
 [5] .symtab SYMTAB 00000000 0002b0 000040 10 6 3 4
 [6] .strtab STRTAB 00000000 0002f0 000008 00 0 0 1
Key to Flags:
 W (write), A (alloc), X (execute), M (merge), S (strings)
 I (info), L (link order), G (group), x (unknown)
 O (extra OS processing required) o (OS specific), p (processor specific)

7/0.Work:>

As you can see there are some sections that should be relocated:As you can see there are some sections that should be relocated:

● ● .rela.text - relocations for .text..rela.text - relocations for .text.
● ● .rodata - data (our strings like "helloworld", "dos.library", etc).rodata - data (our strings like "helloworld", "dos.library", etc)

And the next three sections (.shstrtab, .symtab and .strtab) are stanadard in the AmigaOS4 implementationAnd the next three sections (.shstrtab, .symtab and .strtab) are stanadard in the AmigaOS4 implementation
of ELF, as the AmigaOS4 ELF loader requires them. Usually the linker ('ld' or 'vlink', does not matter) wouldof ELF, as the AmigaOS4 ELF loader requires them. Usually the linker ('ld' or 'vlink', does not matter) would
remove .symtab and .strtab, when the "-s" option is used at linking stage, but whilst that is true for UNIX, it'sremove .symtab and .strtab, when the "-s" option is used at linking stage, but whilst that is true for UNIX, it's
not true not for AmigaOS4 because the AmigaOS4 ELF loader needs the _start symbol to find the programnot true not for AmigaOS4 because the AmigaOS4 ELF loader needs the _start symbol to find the program
entry point, so we can't delete those two sections. As for .shstrtab, we can't delete it either because we stillentry point, so we can't delete those two sections. As for .shstrtab, we can't delete it either because we still
need the sections (we will discuss why later).need the sections (we will discuss why later).

So what about .rela.text and .rodata? Well, they can be removed by modifing our code a bit, to avoid anySo what about .rela.text and .rodata? Well, they can be removed by modifing our code a bit, to avoid any
relocations (thanks to Frank again). We place the data to the .text section, together with the code. So therelocations (thanks to Frank again). We place the data to the .text section, together with the code. So the
distance between the strings and the code is constant (kind of like base-relative addressing). With "bldistance between the strings and the code is constant (kind of like base-relative addressing). With "bl
initbase" we jump to the following instruction while the CPU places the address of this instruction into LR.initbase" we jump to the following instruction while the CPU places the address of this instruction into LR.
This is the base address which we can use:This is the base address which we can use:

non-relocated Hello World
by Frank Wille, janury 2012
adapted for "as" by kas1e

 # ExecBase
.set MainInterface,632

Exec Interface
.set Obtain,60
.set Release,64
.set OpenLibrary,424
.set CloseLibrary,428
.set GetInterface,448
.set DropInterface,456

DOS Interface
.set Write,88
.set Output,96

.macro CALLOS reg,val # Interface register, function offset
 lwz %r0,\val(\reg)
 mr %r3,\reg
 mtctr %r0
 bctrl
.endm

 .text

 .global _start
_start:
 mflr %r0
 stw %r0,4(%r1)
 stwu %r1,-32(%r1)
 stmw %r28,8(%r1)

 # initialize data pointer
 bl initbase
initbase:
 mflr %r31 # r31 initbase

 # get Exec-Interface
 lwz %r30,MainInterface(%r5) # r30 IExec

 # IExec->Obtain()
 CALLOS %r30,Obtain

 # open dos.library and get DOS-Interface
 # IExec->OpenLibrary("dos.library",50)
 addi %r4,%r31,dos_name-initbase
 li %r5,50
 CALLOS %r30,OpenLibrary
 mr. %r28,%r3 # r28 DOSBase
 beq release_exec

 # IExec->GetInterface(DOSBase,"main",1,0)
 mr %r4,%r28
 addi %r5,%r31,main_name-initbase
 li %r6,1
 li %r7,0
 CALLOS %r30,GetInterface
 mr. %r29,%r3 # r29 IDOS
 beq close_dos

 # IDOS->Output()
 CALLOS %r29,Output

 # IDOS->Write(stdout,"Hello World!\n",13)
 mr %r4,%r3
 addi %r5,%r31,hello_world-initbase
 li %r6,hello_world_end-hello_world
 CALLOS %r29,Write

 # IExec->DropInterface(IDOS)
 mr %r4,%r29
 CALLOS %r30,DropInterface

close_dos:
 # IExec->CloseLibrary(DOSBase)
 mr %r4,%r28
 CALLOS %r30,CloseLibrary

release_exec:
 # IExec->Release()
 CALLOS %r30,Release

 # exit(0)
 li %r3,0
 lmw %r28,8(%r1)
 addi %r1,%r1,32

 lwz %r0,4(%r1)
 mtlr %r0
 blr

dos_name:
 .string "dos.library"
main_name:
 .string "main"
hello_world:
 .string "Hello World!"
hello_world_end:

 6/0.Work:> as hello.s -o hello.o
 6/0.Work:> ld -Tldscript hello.o -o hello
 6/0.Work:> strip hello
 6/0.Work:> stat -c=%s hello
 =644

 6/0.Work:> hello
 Hello World!
 6/0.Work:>

644 bytes of size, and still works. If we check the sections in the binary now, we'll see that currently it only644 bytes of size, and still works. If we check the sections in the binary now, we'll see that currently it only
contains the .text section and the three symbol-related sections that are required in AmigaOS4 binaries: contains the .text section and the three symbol-related sections that are required in AmigaOS4 binaries:

6/0.Work:> readelf -S hello
There are 5 section headers, starting at offset 0x184:

Section Headers:
 [Nr] Name Type Addr Off Size ES Flg Lk Inf Al
 [0] NULL 00000000 000000 000000 00 0 0 0
 [1] .text PROGBITS 10000054 000054 00010e 00 AX 0 0 1
 [2] .shstrtab STRTAB 00000000 000162 000021 00 0 0 1
 [3] .symtab SYMTAB 00000000 00024c 000030 10 4 2 4
 [4] .strtab STRTAB 00000000 00027c 000008 00 0 0 1
Key to Flags:
 W (write), A (alloc), X (execute), M (merge), S (strings)
 I (info), L (link order), G (group), x (unknown)
 O (extra OS processing required) o (OS specific), p (processor specific)

6/0.Work:>

5.3 The ELF Loader.

If you want to understand the internals of the ELF format, the best book of reference is the ELF specificationIf you want to understand the internals of the ELF format, the best book of reference is the ELF specification
(see Links), where you can find everything about headers, sections, segments, section headers and so on.(see Links), where you can find everything about headers, sections, segments, section headers and so on.
But of course it is only a specification and so it does not cover ELF loaders and parsers, which areBut of course it is only a specification and so it does not cover ELF loaders and parsers, which are
implemented differenty on different operating systems. While the implementation does not vary too muchimplemented differenty on different operating systems. While the implementation does not vary too much
among UNIXes, the ELF loader in AmigaOS4 is rather specific.among UNIXes, the ELF loader in AmigaOS4 is rather specific.

Let's briefly cover the parts an ELF executable contains:Let's briefly cover the parts an ELF executable contains:

● ● ELF HeaderELF Header
● ● Program (segments) header tableProgram (segments) header table
● ● segmentssegments

● ● sections header tablesections header table
● ● optional sections (certain sections can sometimes come before the sections header table, like for optional sections (certain sections can sometimes come before the sections header table, like for
 example .shstrtab) example .shstrtab)

Although it may seem that sections and segments are the same thing, this is not the case. Sections areAlthough it may seem that sections and segments are the same thing, this is not the case. Sections are
elements of the ELF file. When you load the file into memory, sections are joined to form segments.elements of the ELF file. When you load the file into memory, sections are joined to form segments.
Segments are file elements too but they are loaded to memory and can be directly handled by the loader. SoSegments are file elements too but they are loaded to memory and can be directly handled by the loader. So
you can think of sections as segments, just you should know that segments are something that executes inyou can think of sections as segments, just you should know that segments are something that executes in
memory, while sections is the material from which segments are built in memory.memory, while sections is the material from which segments are built in memory.

This is what our 644-byte Hello World example looks like, with the various parts defined by the ELFThis is what our 644-byte Hello World example looks like, with the various parts defined by the ELF
specification highlighted in different colours:specification highlighted in different colours:

Every part of an ELF file (be it the ELF header, segments header, or any other part) has a different structure,Every part of an ELF file (be it the ELF header, segments header, or any other part) has a different structure,
described in depth in the ELF specification. For a better understanding, let‘s describe the ELF header (thedescribed in depth in the ELF specification. For a better understanding, let‘s describe the ELF header (the
first part in the image above, highlighted in dark green): first part in the image above, highlighted in dark green):

 db 0x7f, "ELF" ; magic
 db 1,2,1 ; 32 bits, big endian, version 1
 db 0,0,0,0,0,0,0,0,0 ; os info

 db 0,2 ; e_type (for executable=2)
 db 0,0x14 ; 14h = powerpc.
 db 0,0,0,1 ; version (always must be set to 1)
 dd 0x10000054 ; entry point (on os4 make no sense)
 dd 0x00000034 ; program header table file offset in bytes
 dd 0x00000184 ; section header table file offset in bytes
 db 0,0,0,0 ; e_flag - processor specific flags
 db 0,0x34 ; e_ehsize - size of ELF header in bytes

 db 0,0x20 ; e_phentsize - size of one entry in bytes, of program
 ; header table (all the entries are the same size)

 db 0,2 ; e_phnum - number of entires in the program header
 ; table.

 db 0,0x28 ; e_shentsize - section headers size in bytes
 db 0,5 ; e_shnum - number of entires in the section header table
 db 0,2 ; e_eshstrndx - section header table index of the entry ;

 ; assosiated with the section name string table

When you try to execute a program, the ELF loader first checks if it's a genuine ELF binary or not.When you try to execute a program, the ELF loader first checks if it's a genuine ELF binary or not.
Depending on the result, the loading of the executable is either allowed or denied. Once loaded in memory,Depending on the result, the loading of the executable is either allowed or denied. Once loaded in memory,
code from the respective segments is executed. As I said before, the necessary fields are parsed differentlycode from the respective segments is executed. As I said before, the necessary fields are parsed differently
on different operating systems. For example under Linux, the loader parses the ELF structure going intoon different operating systems. For example under Linux, the loader parses the ELF structure going into
greater depth compared to the AmigaOS4 loader. Still there is some common ground; on both OSes you can,greater depth compared to the AmigaOS4 loader. Still there is some common ground; on both OSes you can,
for instance, write anything you want to the "os info" field. On AmigaOS4 you can fully reuse more fields, andfor instance, write anything you want to the "os info" field. On AmigaOS4 you can fully reuse more fields, and
here is how the OS4 ELF loader parses the ELF headers: here is how the OS4 ELF loader parses the ELF headers:

● ● magic (first 7 bytes): db 0x7f,"ELF", 0x01,0x02,0x01 (100% required)magic (first 7 bytes): db 0x7f,"ELF", 0x01,0x02,0x01 (100% required)
● ● all the subsequent fields are not parsed at all and can contain any data, until the loader reaches all the subsequent fields are not parsed at all and can contain any data, until the loader reaches
 the section header tables' file offset in bytes field (required) the section header tables' file offset in bytes field (required)
● ● then again there can be any data, until e_phnum (the number of entires in the program header then again there can be any data, until e_phnum (the number of entires in the program header
 table whichtable which is required as well) is required as well)
● ● and then the next 8 bytes of info (4 fields) about section headers/sections are requiredand then the next 8 bytes of info (4 fields) about section headers/sections are required

Take a look at the image below, which shows an ELF header in which all unparsed bytes are marked by "A"Take a look at the image below, which shows an ELF header in which all unparsed bytes are marked by "A"
letters. You can use these bytes for anything you want.letters. You can use these bytes for anything you want.

But please bear in mind that doing so would breach the specification. The fact that it works now doesn'tBut please bear in mind that doing so would breach the specification. The fact that it works now doesn't
mean it will also work with the next version of the ELF loader, as the AmigaOS4 developers could use themean it will also work with the next version of the ELF loader, as the AmigaOS4 developers could use the
currently unparsed fields for something meaningful in the future.currently unparsed fields for something meaningful in the future.

The ELF header is not the only place where you can insert (at least with the current version of the loader)The ELF header is not the only place where you can insert (at least with the current version of the loader)
your own data. After the ELF header there come program headers (i.e. headers that describe segments). Inyour own data. After the ELF header there come program headers (i.e. headers that describe segments). In
our particular case we have one program section header for the .text segment. And here comes the suprise:our particular case we have one program section header for the .text segment. And here comes the suprise:
the AmigaOS4 ELF loader does not parse the program headers at all! Instead, the parsing is done inthe AmigaOS4 ELF loader does not parse the program headers at all! Instead, the parsing is done in
sections and section headers only. Apparently, the OS4 loader does something that on UNIXes is normallysections and section headers only. Apparently, the OS4 loader does something that on UNIXes is normally
put in the ELF executable and the loader just gets data from it. But under AmigaOS4 this is not the case.put in the ELF executable and the loader just gets data from it. But under AmigaOS4 this is not the case.

Although the ELF binary produced by GCC is built correctly and according to specification, half of theAlthough the ELF binary produced by GCC is built correctly and according to specification, half of the
sections and many fields are not used under OS4.sections and many fields are not used under OS4.

So the programs section headers can fully be used for your own needs. We can remove section namesSo the programs section headers can fully be used for your own needs. We can remove section names
completely (and give them, for example, an "empty" name by writing 0 string-offset in the sh_name field ofcompletely (and give them, for example, an "empty" name by writing 0 string-offset in the sh_name field of
each section header entry). But .shstrtab must still be kept, with a size of 1 byte. A NULL section header caneach section header entry). But .shstrtab must still be kept, with a size of 1 byte. A NULL section header can
be reused too (you can see that a NULL section header comes after the .shrstab section, so we have plentybe reused too (you can see that a NULL section header comes after the .shrstab section, so we have plenty
of space). Check the file "bonus/unused_fields/hello" to see which areas can be reused (these are indicatedof space). Check the file "bonus/unused_fields/hello" to see which areas can be reused (these are indicated
by 0xAA bytes).by 0xAA bytes).

Now it‘s clear that we can manipulate sections (i.e. delete empty ones and those ignored by the ELF loader)Now it‘s clear that we can manipulate sections (i.e. delete empty ones and those ignored by the ELF loader)
and recalculate all the addresses in the necessary fields. To do that you will really need to dig into the ELFand recalculate all the addresses in the necessary fields. To do that you will really need to dig into the ELF
specification. For example, you can put the _start label to any suitable place (such as the ELF header, orspecification. For example, you can put the _start label to any suitable place (such as the ELF header, or
right at the begining of an ignored field) and then just put the adjusted address in the .strtab section offsetright at the begining of an ignored field) and then just put the adjusted address in the .strtab section offset
field. This way you can save 8 bytes, so the size of our binary is now 636 bytes. Then there is the .symtabfield. This way you can save 8 bytes, so the size of our binary is now 636 bytes. Then there is the .symtab
section at the end of the file, which is 48 bytes long. We can put it right in the place of .shstrtab (34 bytes insection at the end of the file, which is 48 bytes long. We can put it right in the place of .shstrtab (34 bytes in
our case) and in the following part of the NULL section header (so as to squeeze the remaining 14 bytes in).our case) and in the following part of the NULL section header (so as to squeeze the remaining 14 bytes in).
Just like this:Just like this:

As a result, the size of our binary becomes mere 588 bytes, and the executable still works of course. ToolsAs a result, the size of our binary becomes mere 588 bytes, and the executable still works of course. Tools
like 'readelf' will surely be puzzled by such custom-hacked ELF files, but we only need to worry about whatlike 'readelf' will surely be puzzled by such custom-hacked ELF files, but we only need to worry about what
the ELF loader thinks about them. If the loader is happy, the binary is working and the code is executed inthe ELF loader thinks about them. If the loader is happy, the binary is working and the code is executed in
memory.memory.

In the bonus directory that comes with this article, you can try out an example binary the altered structure ofIn the bonus directory that comes with this article, you can try out an example binary the altered structure of
which is depicted by the image above. In the binary, .strtab (the _start symbol) is moved to the programwhich is depicted by the image above. In the binary, .strtab (the _start symbol) is moved to the program
section header, and .symtab is moved on top of .shstrtab + the NULL section header (see directorysection header, and .symtab is moved on top of .shstrtab + the NULL section header (see directory
"bonus/shift_sections")."bonus/shift_sections").

5.4 What else can we do ?5.4 What else can we do ?

Now, to give you some area to play with, let’s mention a few ways to go if you want to reduce the executableNow, to give you some area to play with, let’s mention a few ways to go if you want to reduce the executable
size even more:size even more:

You can play with the assembler code itself (that is, our .text section), reducing parts of the code and/orYou can play with the assembler code itself (that is, our .text section), reducing parts of the code and/or
trying to remove unnecessary instructions. Also, you can put "data strings" (i.e. all those "main", "helloworld"trying to remove unnecessary instructions. Also, you can put "data strings" (i.e. all those "main", "helloworld"
etc.) manually to the binary - the ELF header or the program section header - and then, in your program, letetc.) manually to the binary - the ELF header or the program section header - and then, in your program, let
the code use them via indirect addressing.the code use them via indirect addressing.

As I said before, you can also remove unused sections, move others to a different place, and recalculate allAs I said before, you can also remove unused sections, move others to a different place, and recalculate all
the necessary fields in the sections that are still left in the binary. What we did here to the .strtab and .symtabthe necessary fields in the sections that are still left in the binary. What we did here to the .strtab and .symtab
sections was move them but some of these can as well be deleted along with their headers, which will resultsections was move them but some of these can as well be deleted along with their headers, which will result
in further size reductions. The program header, too, remained untouched in our example so it is open doorsin further size reductions. The program header, too, remained untouched in our example so it is open doors
for experiment.for experiment.

Sure I could show you how far you can go right in this article, without „keeping secrets“ all to myself. But thenSure I could show you how far you can go right in this article, without „keeping secrets“ all to myself. But then
again, you would not learn as much as you can when trying things out for yourself. Remember thatagain, you would not learn as much as you can when trying things out for yourself. Remember that
experiment means learning, and learning means improvement.experiment means learning, and learning means improvement.

6.Final Words6.Final Words

The article, of course, aims at encouraging learning. If you are an application programmer, you'll probablyThe article, of course, aims at encouraging learning. If you are an application programmer, you'll probably
never need to use assembler directly or construct ELFs from scratch byte per byte. But the knowledge ofnever need to use assembler directly or construct ELFs from scratch byte per byte. But the knowledge of
how things work at low level can help you understand and resolve many problems that may turn up from timehow things work at low level can help you understand and resolve many problems that may turn up from time
to time and that are related to compilers, linkers and assembler-code parts. Also, it can give you a betterto time and that are related to compilers, linkers and assembler-code parts. Also, it can give you a better
overview of the AmigaOS4 internals so when you start a project, it will be much easier for you to get rid ofoverview of the AmigaOS4 internals so when you start a project, it will be much easier for you to get rid of
problems: without asking questions in the forums and losing hours fiddling with the basics.problems: without asking questions in the forums and losing hours fiddling with the basics.

7.Links7.Links

1.ELF specification: ELF specification: http://flint.cs.yale.edu/cs422/doc/ELF_Format.pdfhttp://flint.cs.yale.edu/cs422/doc/ELF_Format.pdf
2.PPC SYSV4 ABI.pdf: PPC SYSV4 ABI.pdf: http://refspecs.linuxbase.org/ELF/ELFspec_ppc.pdfhttp://refspecs.linuxbase.org/ELF/ELFspec_ppc.pdf
3.Green Book (MPCFPE32B.pdf): Green Book (MPCFPE32B.pdf): http://www.freescale.com/files/product/doc/MPCFPE32B.pdfhttp://www.freescale.com/files/product/doc/MPCFPE32B.pdf
4.GDB.txt: GDB.txt: http://www.gnu.org/s/GDB/documentation/http://www.gnu.org/s/GDB/documentation/
5.Linker Scripts: Linker Scripts: http://sourceware.org/binutils/docs/ld/Scripts.html#Scriptshttp://sourceware.org/binutils/docs/ld/Scripts.html#Scripts

or SDK:Documentation/CompilerTools/ld.pdf , chapter 3.0 "Linker Scripts"or SDK:Documentation/CompilerTools/ld.pdf , chapter 3.0 "Linker Scripts"

http://sourceware.org/binutils/docs/ld/Scripts.html#Scripts
http://www.gnu.org/s/GDB/documentation/
http://www.freescale.com/files/product/doc/MPCFPE32B.pdf
http://refspecs.linuxbase.org/ELF/ELFspec_ppc.pdf
http://flint.cs.yale.edu/cs422/doc/ELF_Format.pdf

